One-Sided Difference Approximations for Nonlinear Conservation Laws

نویسنده

  • Stanley Osher
چکیده

We analyze one-sided or upwind finite difference approximations to hyperbolic partial differential equations and, in particular, nonlinear conservation laws. Second order schemes are designed for which we prove both nonlinear stability and that the entropy condition is satisfied for limit solutions. We show that no such stable approximation of order higher than two is possible. These one-sided schemes have desirable properties for shock calculations. We show that the proper switch used to change the direction in the upwind differencing across a shock is of great importance. New and simple schemes are developed for which we prove qualitative properties such as sharp monotone shock profiles, existence, uniqueness, and stability of discrete shocks. Numerical examples are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-sided stability and convergence of the Nessyahu-Tadmor scheme

Non-oscillatory schemes are widely used in numerical approximations of nonlinear conservation laws. The Nessyahu-Tadmor (NT) scheme is an example of a second order scheme that is both robust and simple. In this paper, we prove a new stability property of the NT scheme based on the standard minmod reconstruction in the case of a scalar strictly convex conservation law. This property is similar t...

متن کامل

Entropy Stable Approximations of Nonlinear Conservation Laws

A central problem in computational fluid dynamics is the development of the numerical approximations for nonlinear hyperbolic conservation laws and related time-dependent problems governed by additional dissipative and dispersive forcing terms. Entropy stability serves as an essential guideline in the design of new computationally reliable numerical schemes. My dissertation research involves a ...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

A Third-Order Accurate Variation Nonexpansive Difference Scheme for Single Nonlinear Conservation Laws

It was widely believed that all variation nonexpansive finite difference schemes for single conservation laws must reduce to first-order at extreme points of the approximation. It is shown here that this belief is in fact false. A third-order scheme, which at worst may reduce to second order at extreme points, is developed and analyzed. Moreover, extensive numerical experiments indicate that th...

متن کامل

Chebyshev–legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws∗

In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order Ds = ( √ 1− x2∂x) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev–Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010